
CNT 4714: Servlets – Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4714: Enterprise Computing

Summer 2014

Introduction to Servlet Technology– Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/sum2014

CNT 4714: Servlets – Part 2 Page 2 Dr. Mark Llewellyn ©

More XHTML Document Details
• Let’s look a bit closer at what happens in our servlet as it executes.

(See the servlet code on page 4.)

– This line begins the overridden method doGet to respond to the get
requests. In this case, the HttpServletRequest object parameter
represents the client’s request and the HttpServletResponse
object parameter represents the server’s response to the client.

– If method doGet is unable to handle a client’s request, it throws an
exception of type javax.servlet.ServletException. If
doGet encounters an error during stream processing (when reading
from the client or writing to the client), it throws a
java.io.IOException.

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

CNT 4714: Servlets – Part 2 Page 3 Dr. Mark Llewellyn ©

More XHTML Document Details (cont.)

• The first line above uses the response object’s setContentType

method to specify the content type of the document to be sent as the

response to the client. This enables the client browser to understand and

handle the content it receives from the server. The content type is also

referred to as the MIME (Multipurpose Internet Mail Extension) type of
the data. In this servlet, the content type is text/html to indicate to

the browser that the response is an XHTML/HTML document.

• The second line above uses the response object’s getWriter method to

obtain a reference to the PrintWriter object that enables the servlet to

send content to the client. If the response is binary data, like an image,

method getOutputStream would be used to obtain a reference to a

ServletOutputStream object.

response.setContentType("text/html");

PrintWriter out = response.getWriter();

CNT 4714: Servlets – Part 2 Page 4 Dr. Mark Llewellyn ©

More XHTML Document Details (cont.)

• These lines create the HTML5 document.

CNT 4714: Servlets – Part 2 Page 5 Dr. Mark Llewellyn ©

Deploying a Web Application

• Servlets, JSPs and their supporting files are deployed as part of a

Web application.

• Web applications are deployed in the webapps subdirectory of

Tomcat.

• A Web application has a well-known directory structure in which

all the files that are part of the application reside.

• This directory structure is created by the server administrator in

the webapps directory, or the entire directory structure can be

archived in a Web application archive file known as a WAR file

(ending with a .war file extension – war stands for web

application archive) which is placed in the webapps

directory.

CNT 4714: Servlets – Part 2 Page 6 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• The Web application directory structure contains a context root, which is

the top-level directory for an entire Web application along with several

subdirectories as shown below:

context root – The root directory for the Web application. All the JSPs, HTML

documents, servlets and supporting files such as images and class files reside in

this directory or one of the subdirectories. The name of this directory is specified

by the Web application creator. To provide structure in a Web application,

subdirectories can be placed in the context root. It is common to see an images

subdirectory, for example.

WEB-INF – This subdirectory contains the Web application deployment

descriptor web.xml.

WEB-INF/classes – This subdirectory contains the servlet class files and other

supporting class files used in a Web application. If the classes are part of a

package, the complete package directory structure would begin here.

WEB-INF/lib – This subdirectory contains Java archive (JAR) files. The JAR

files can contain servlet class files and other supporting class files.

CNT 4714: Servlets – Part 2 Page 7 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• As we mentioned in the previous section of notes, Tomcat

will default to a welcome page which is specified in the

web.xml file. The standard default values were shown on

page 48 in the previous set of notes.

• If you do not create one of these files, the default page for a

web application is not very appealing.

CNT 4714: Servlets – Part 2 Page 8 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• Since we would like our clients to see something more appropriate that

the default web application page, you should create your own web

application welcome page.

• This page is simply an HTML page and I’ve created one for the web

applications we create from this point forward. I’ve simply modeled the

page using our course web page as a template. The code for this page is

included on the course code page if you want to use it, but feel free to

design your own.

• I’ll utilize this page as a home page for all of our servlets and JSPs that

we’ll see later in the course.

• I’ve also created a new web application named CNT4714 that we’ll use

for our future servlets and JSPs.

• Now, when the client enters the URL, http://localhost:8080/CNT4714

they will see the home page shown in the next slide.

http://localhost:8080/cop4610

CNT 4714: Servlets – Part 2 Page 9 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 2 Page 10 Dr. Mark Llewellyn ©

Deploying a Web Application (cont.)

• The Web application directory structure that I set up for the

CNT4714 web application looks like the following:

C:\program files\Apache Software Foundation\Tomcat 7.0.54 webapps

…

\CNT4714

index.html

WelcomeServlet.html

WelcomeServlet2.html

\images

\WEB-INF

web.xml

\classes

WelcomeServlet.class

WelcomeServlet2.class

WelcomeServlet.java

WelcomeServlet2.java

The “home page”

HTML “driver” files to initiate

the servlets.

Web application configuration file

Java class files (and source

files) for the servlets

CNT 4714: Servlets – Part 2 Page 11 Dr. Mark Llewellyn ©

A Closer Look at the web.xml File

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

version="2.4">

<!-- General description of your Web application -->

<display-name>

Servlet Technology

</display-name>

<description>

This is the Web application in which we will

demonstrate our JSP and Servlet examples.

</description>

The web-app element

defines the configuration

of each servlet in the Web

application and the servlet

mapping for each servlet.

The display-name element

specifies a name which can

be displayed to the server

administrator on which the

Web application is installed.

The description element

specifies a description of the

Web application that can also

be displayed to the server

administrator.

CNT 4714: Servlets – Part 2 Page 12 Dr. Mark Llewellyn ©

A Closer Look at the web.xml File

<!-- Servlet definitions -->

<servlet>

<servlet-name>welcome1</servlet-name>

<description>

A simple welcome servlet that handles an HTTP get request.

</description>

<servlet-class>

WelcomeServlet

</servlet-class>

</servlet>

<!-- Servlet mappings -->

<servlet-mapping>

<servlet-name>welcome1</servlet-name>

<url-pattern>/welcome1</url-pattern>

</servlet-mapping>

</web-app>

Element servlet describes a servlet.

There is one of these for each

servlet in the Web application.

Element servlet-name is the name

chosen for the servlet.

Element description describes

the servlet and can be displayed

to the server administrator.

Element server-class specifies the compiled servlet’s fully qualified path

name. In this case the servlet is defined by the class WelcomeServlet.

Element servlet-mapping specifies the servlet-

name and url-pattern elements. The URL pattern

helps the server determine which requests are

sent to the servlet (welcome1). Since this web

application will be installed as part of the

CNT4714 context root, the relative URL supplied

to the browser to invoke the servlet is

/CNT4714/welcome1.

CNT 4714: Servlets – Part 2 Page 13 Dr. Mark Llewellyn ©

Handling HTTP get Requests Containing Data

• When a requesting a document or resource from a Web server,

it is often the case that data needs to be supplied as part of the

request. The second servlet example in the previous set of
notes responds to an HTTP get request that contains the name

entered by the user. The servlet uses this name as part of the

response to the client.

• Parameters are passes as name-value pairs in a get request.

Within the source code for the second WelcomeServlet2 you

will find the following line (see next page):

String clientName = request.getParameter(“clientname");

Invoke request object’s

getParameter method

CNT 4714: Servlets – Part 2 Page 14 Dr. Mark Llewellyn ©

Invoke request object’s

getParameter method

CNT 4714: Servlets – Part 2 Page 15 Dr. Mark Llewellyn ©

Handling HTTP get Requests Containing Data
(cont.)

• The WelcomeServlet2.html document provides a form in which

the user can input their name into the text input element

clientname and click the Submit button to invoke the servlet.

• When the user clicks the Submit bitton, the values of the input

elements are placed in name-value pairs as part of the request to

the server.

• Notice in the screen shot on the next page that the Tomcat server

has appended ?clientname=Mark to the end of the action

URL. The ? separates the query string (i.e., the data passed as part

of the get request) from the rest of the URL in a get request.

The name-value pairs are passed with the name and value

separated by =. If there is more than one name-value pair, each

pair is separated by an &.

CNT 4714: Servlets – Part 2 Page 16 Dr. Mark Llewellyn ©

Context root is /CNT4714

Servlet alias is welcome2

Form in WelcomeServlet2.html that specifies an

input whose type is “text” and whose name is

“clientname”

CNT 4714: Servlets – Part 2 Page 17 Dr. Mark Llewellyn ©

CNT 4714: Servlets – Part 2 Page 18 Dr. Mark Llewellyn ©

Notice that the browser has appended

?firstname=Mark to the end of the action

URL when WelcomeServlet2 is invoked

Client directly types this URL.

Note: The same servlet could have been invoked directly by typing in directly to the browsers Address

or Location field. This is shown in the overlay below

CNT 4714: Servlets – Part 2 Page 19 Dr. Mark Llewellyn ©

Handling HTTP post Requests

• An HTTP post request is typically used to send data from an

HTML form to a server-side form handler that processes the

data. For example, when you respond to a Web-based survey, a
post request normally supplies the information you entered

into the form to the Web server.

• If you were to replace the doGet method in WelcomeServlet2

with a doPost method, nothing would change in the apparent

execution of the servlet with the exception that the values

passed to the server are not appended to the request URL.

• This is illustrated by WelcomeServlet3 which is exactly the
same as WelcomeServlet2 except that it uses the doPost

method. Notice how the URL differs between the two versions.

CNT 4714: Servlets – Part 2 Page 20 Dr. Mark Llewellyn ©

WelcomeServlet2 uses the get method to supply the data to the form whereas

WelcomeServlet3 uses the post method to do the same. Notice that the data is

appended to the URL when the get method is used but it is not appended to the

URL when the post method is used.

WelcomeServlet2 uses a get method.

WelcomeServlet3 uses a post method.

CNT 4714: Servlets – Part 2 Page 21 Dr. Mark Llewellyn ©

Modifications Necessary to web.xml File For

Handling Additional Servlets

• In addition to modifying our index.html (homepage) file

to include descriptors for launching the additional

WelcomeServlet2 and WelcomeServlet3 servlets, we also

need to modify the web.xml configuration file to register

these servlets with Tomcat.

• We will need to include servlet definitions and servlet

mappings for both WelcomeServlet2 and WelcomeServlet3.

• The additional statements that must be included in this file

are shown on the next slide.

• You must also include the Java class files for these servlets

in the classes folder.

CNT 4714: Servlets – Part 2 Page 22 Dr. Mark Llewellyn ©

<servlet>

<servlet-name>welcome2</servlet-name>

<description>

A more personal welcome servlet

</description>

<servlet-class>

WelcomeServlet2

</servlet-class>

</servlet>

<servlet>

<servlet-name>welcome3</servlet-name>

<description>

A more personal welcome serlvet - using a post action

</description>

<servlet-class>

WelcomeServlet3

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>welcome2</servlet-name>

<url-pattern>/welcome2</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>welcome3</servlet-name>

<url-pattern>/welcome3</url-pattern>

</servlet-mapping>

Servlet descriptions

Servlet

mappings

CNT 4714: Servlets – Part 2 Page 23 Dr. Mark Llewellyn ©

Redirecting Requests to Other Resources

• Sometimes it is useful to redirect a request to a different

resource. For example, a servlet’s job might be to determine

the type of the client’s browser and redirect the request to a

Web page that was designed specifically for that browser.

• The same technique is used when redirecting browsers to an

error page when the handling of a request fails.

• Shown on the next two pages is the source code for a

ReDirectionServlet (available on the course website)

which redirects the client to another resource selected from a

list of resources.

CNT 4714: Servlets – Part 2 Page 24 Dr. Mark Llewellyn ©

RedirectionServlet.java

sendRedirect is a method within the

HTTPServletResponse Interface. The

string parameter is utilized as the URL to

which the client’s request is redirected.

CNT 4714: Servlets – Part 2 Page 25 Dr. Mark Llewellyn ©

RedirectionServlet.java
continued

CNT 4714: Servlets – Part 2 Page 26 Dr. Mark Llewellyn ©

ReDirectionServlet.html

CNT 4714: Servlets – Part 2 Page 27 Dr. Mark Llewellyn ©

The servlet and servlet-mapping Portions Of

web.xml Modified To Handle The

ReDirectionServlet

<servlet>

<servlet-name>redirect</servlet-name>

<description>

A redirection servlet.

</description>

<servlet-class>

ReDirectionServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>redirect</servlet-name>

<url-pattern>/redirect</url-pattern>

</servlet-mapping>

CNT 4714: Servlets – Part 2 Page 28 Dr. Mark Llewellyn ©

User clicks this link as

is redirected to the

servlet shown below.

CNT 4714: Servlets – Part 2 Page 29 Dr. Mark Llewellyn ©

User clicks link to be

redirected to our course

website.

CNT 4714: Servlets – Part 2 Page 30 Dr. Mark Llewellyn ©

This is the window that

appears when the user

selects the Intentional

error link from the

Redirection servlet.

Notice that the HTTP

Status is 404

CNT 4714: Servlets – Part 2 Page 31 Dr. Mark Llewellyn ©

Session Tracking and Servlets
• Many e-businesses personalize users’ browsing experiences, tailoring

web pages to their users’ individual preferences and allowing them to

bypass irrelevant content.

• This is typically done by tracking the user’s movement through the

Internet and combining that data with information provided by the

users themselves, such as billing information, interests and hobbies,

among other things.

• Personalization of the Internet has become rather commonplace today

with many sites even allowing their clients the ability to customize

their homepage to fit individual user likes/needs (see MSN.com,

CNN.com or numerous other sites).

• This increase in personalization of the Internet has also given rise to

the problems of privacy invasion. What happens when the e-business

to which you give your personal data sells or gives that data to

another organization without your knowledge?

CNT 4714: Servlets – Part 2 Page 32 Dr. Mark Llewellyn ©

Session Tracking and Servlets (cont.)

• As we have discussed before, the request/response mechanism of the

Internet is based on HTTP.

• Unfortunately, HTTP is a stateless protocol – it does not support

persistent information that could help a web server determine that a

request is from a particular client.

• As far as a web server is concerned, every request could be from the

same client or every request could be from a different client. Thus, sites

like MSN.com and CNN.com need a mechanism to identify individual

clients.

• To help the server distinguish between clients, each client must identify

itself to the server. There are a number of popular techniques for

distinguishing between clients.

• Two common techniques are cookies and session tracking we’ll look at

both of these mechanisms. Two other techniques are hidden forms and

URL-rewriting.

CNT 4714: Servlets – Part 2 Page 33 Dr. Mark Llewellyn ©

Cookies
• Cookies are a popular technique for customizing web pages.

Browsers can store cookies on the user’s computer for retrieval

later in the same browsing session or in future browsing sessions.

• For example, cookies are used in on-line shopping applications to

store unique identifiers for the users. When users add items to

their on-line shopping carts or perform other tasks resulting in a

request to the web server, the server receives cookies containing

unique identifiers for each user. The server then uses the unique

identifier to locate the shopping carts and perform any necessary

processing.

• Cookies are also used to indicate the client’s shopping preferences.

When the servlet receives the client’s nest communication, the

servlet can examine the cookie(s) it sent to the client in a previous

communication, identify the client’s preferences and immediately

display products of interest to that particular client.

CNT 4714: Servlets – Part 2 Page 34 Dr. Mark Llewellyn ©

Cookies (cont.)

• Cookies are text-based data that are sent by servlets (or other

similar server-side technologies like JSPs and PHP that we will see

later) as part of responses to clients.

• Every HTTP-based interaction between a client and a server

includes a header containing information about the request (when

the communication is from the client to the server) or information

about the response (when the communication is from the server to

the client).

• When an HTTPServlet receives a request the header includes

information such as the request type (e.g., get or post) and the

cookies that are sent by the server to be stored on the client

machine. When the server prepares its response, the header

information includes any cookies the server wants to store on the

client computer and other information such as the MIME type of

the response.

CNT 4714: Servlets – Part 2 Page 35 Dr. Mark Llewellyn ©

Cookies (cont.)

• Depending on the maximum age of a cookie, the web browser

either maintains the cookie for the duration of the browsing

session (i.e., until the user closes the web browser) or stores the

cookie on the client computer for future use.

• When a browser requests a resource from a server, cookies that

were previously sent to the client by that server are returned to the

server as part of the request formulated by the browser.

• Cookies are deleted automatically when they expire (i.e., reach

their maximum age).

• Browsers that support cookies must be able to store a minimum of

20 cookies per web site and 300 cookies per user. Browsers may

limit the cookie size to 4K.

• Each cookie stored on the client contains a domain. The browser

sends a cookie only to the domain stored in the cookie.

CNT 4714: Servlets – Part 2 Page 36 Dr. Mark Llewellyn ©

Cookies (cont.)

• The next example shows how a cookie can be used to differentiate

between first-time and repeat visitors to our servlet. To do this our

servlet needs to check for the existence of a uniquely named

cookie; if it is there, the client is a repeat visitor. If the cookie is

not there, the visitor is a newcomer.

• This example, will use a cookie for this purpose. The cookie will

be named “RepeatVisitor”.

• Recall that by default, a cookie exists only during the current

browsing session. The cookie in this example is a persistent

cookie with a lifetime of 1 minute (see the code on the next page).

CNT 4714: Servlets – Part 2 Page 37 Dr. Mark Llewellyn ©

RepeatVisitor Servlet
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Servlet that says "Welcome aboard" to first-time

// visitors and "Welcome back" to repeat visitors.

public class RepeatVisitor extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

boolean newbie = true;

Cookie[] cookies = request.getCookies();

if (cookies != null) {

for(int i=0; i<cookies.length; i++) {

Cookie c = cookies[i];

if ((c.getName().equals("repeatVisitor")) &&

// Could omit test and treat cookie name as a flag

(c.getValue().equals("yes"))) {

newbie = false;

break;

}

}

}

String title;

If the cookie name is

“RepeatVisitor” and

the value of the cookie

is “yes” then the visitor

has been here before.

CNT 4714: Servlets – Part 2 Page 38 Dr. Mark Llewellyn ©

RepeatVisitor Servlet (cont.)
if (newbie) {

Cookie returnVisitorCookie = new Cookie("repeatVisitor", "yes");

// returnVisitorCookie.setMaxAge(60*60*24*365); // 1 year

returnVisitorCookie.setMaxAge(60); //cookie expires in 1 minute

response.addCookie(returnVisitorCookie);

title = "Welcome Aboard";

} else { title = "Welcome Back"; }

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String docType =

"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";

out.println ("<body bgcolor=white background=images/background.jpg

lang=EN-US link=blue vlink=blue >");

out.println ("<body style='tab-interval:.5in'>");

out.println ("");

out.println ("
");

out.println(docType +

"<HTML>\n" +

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

"</BODY></HTML>");

}

}

Set cookie expiration

date and send it to the

client.

CNT 4714: Servlets – Part 2 Page 39 Dr. Mark Llewellyn ©

This is the cookie written

by the server “localhost”.

In Opera you can see this

dialog box via the

Settings > Privacy &

Security > Cookies > All

Cookies and Site Data.

CNT 4714: Servlets – Part 2 Page 40 Dr. Mark Llewellyn ©

After 1 minute, the cookie

no longer exists

CNT 4714: Servlets – Part 2 Page 41 Dr. Mark Llewellyn ©

Click to create a localhost

cookie

CNT 4714: Servlets – Part 2 Page 42 Dr. Mark Llewellyn ©

First visit by a client to

the RepeatVisitor servlet

Subsequent visit by a client

to the RepeatVisitor servlet

(within 1 minute)

CNT 4714: Servlets – Part 2 Page 43 Dr. Mark Llewellyn ©

First visit by a client to

the RepeatVisitor servlet

Subsequent visit by a client

to the RepeatVisitor servlet

(within 1 minute)

CNT 4714: Servlets – Part 2 Page 44 Dr. Mark Llewellyn ©

Using Cookies Attributes
• Before adding the cookie to the outgoing headers, you can set

various characteristics of the cookie by using the following set

methods.

• Although each set method has a corresponding get method to

retrieve the attribute value, note that the attributes are part of the

header sent from the server to the browser; they are not part of the

header returned by the browser to the server.

• Except for name and value, the cookie attributes apply only to

outgoing cookies from the server to the client; they are not set on

cookies that come from the browser to the server. This means that

these attributes are not available in the cookies that you get by

means of request.getCookies.

• A brief description of the methods for setting and getting cookie

attribute values are shown on the next page.

CNT 4714: Servlets – Part 2 Page 45 Dr. Mark Llewellyn ©

setComment(string)

getComment()
Specify or look up a comment associated with the cookie.

setDomain(string)

getDomain()

Set or retrieve the domain to which the cookie applies. Normally, the

browser returns cookies only to the exact same hostname that sent the

cookies.

setMaxAge(int)

getMaxAge()

These methods tell how much time (in seconds) should elapse before the

cookie expires. A negative value, which is the default, indicates that the

cookie will last only for the current browsing session and will not be stored

on disk. Specifying a value of 0 instructs the browser to delete the cookie.

getName()
Retrieves the name of the cookie. The name and the value are the two

pieces of information which are the most important.

setPath(string)

getPath()

Sets or retrieves the path to which the cookie applies. If you do not specify

a path, the browser returns the cookie only to URLs in or below the directory

containing the page that sent the cookie.

setSecure(boolean)

getSecure()

Sets or retrieves the boolean value which indicates whether the cookie

should only be sent over encrypted connections. The default is false.

setValue(string)

getValue()
Sets or retrieves the value associated with the cookie.

CNT 4714: Servlets – Part 2 Page 46 Dr. Mark Llewellyn ©

Differentiating Session Cookies From

Persistent Cookies
• The next example illustrates the use of cookie attributes by

contrasting the behavior of cookies with and without a maximum

age.

• This servlet called CookieTest, performs two tasks

1. First the servlet sets six outgoing cookies. Three have no explicit age

(i.e., they have a negative value by default), meaning that they will

apply only to the current browsing session – until the client restarts
the browser. The other three cookies use setMaxAge to stipulate

that the browser should write them to disk and that they should persist

for the next 15 minutes (15 * 60 = 900 seconds), regardless of

whether the client restarts the browser or not.

2. Second, the servlet uses request.getCookies to find all the incoming

cookies and display their names and values in an HTML table.

CNT 4714: Servlets – Part 2 Page 47 Dr. Mark Llewellyn ©

CookieTest Servlet
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Creates a table of the cookies associated with

// the current page. Also sets six cookies: three

// that apply only to the current session

// (regardless of how long that session lasts)

// and three that persist for an hour (regardless

// of whether the browser is restarted).

public class CookieTest extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

for(int i=0; i<3; i++) {

// Default maxAge is -1, indicating cookie

// applies only to current browsing session.

Cookie cookie = new Cookie("Session-Cookie-" + i,

"Cookie-Value-S" + i);

response.addCookie(cookie);

cookie = new Cookie("Persistent-Cookie-" + i,

"Cookie-Value-P" + i);

// Cookie is valid for 15 minutes, regardless of whether

// user quits browser, reboots computer, or whatever.

cookie.setMaxAge(900); //cookie expires in 15 minutes

response.addCookie(cookie);

}

CNT 4714: Servlets – Part 2 Page 48 Dr. Mark Llewellyn ©

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String docType ="<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";

String title = "Active Cookies";

out.println ("<body bgcolor=white background=images/background.jpg

lang=EN-US link=blue vlink=blue >");

out.println ("<body style='tab-interval:.5in'>");

out.println (""); out.println ("
");

out.println(docType +"<HTML>\n" + "<HEAD><TITLE>" + title +

"</TITLE></HEAD>\n" + "<BODY

BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

"<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +

"<TR BGCOLOR=\"#FFAD00\">\n" + " <TH>Cookie Name\n" +

" <TH>Cookie Value");

Cookie[] cookies = request.getCookies();

if (cookies == null) {

out.println("<TR><TH COLSPAN=2>No cookies");

} else {

Cookie cookie;

for(int i=0; i<cookies.length; i++) {

cookie = cookies[i];

out.println("<TR>\n" +

" <TD>" + cookie.getName() + "\n" +

" <TD>" + cookie.getValue());

} } out.println("</TABLE></BODY></HTML>");

} }

CNT 4714: Servlets – Part 2 Page 49 Dr. Mark Llewellyn ©

Client clicks the Run

Cookie Test Servlet

button from

HomePage

Results of initial visit to the

CookieTest servlet.

CookieTest Servlet response to

client indicates that initially there

are no active cookies.

Same results would occur if you

waited more than 15 minutes and

then revisited the CookieTest

servlet in a new browser session.

CNT 4714: Servlets – Part 2 Page 50 Dr. Mark Llewellyn ©

Results of revisiting the

CookieTest servlet in the same

browser session within 15

minutes of the very first visit.

After client runs the servlet the

first time 3 persistent cookies

and 3 session cookies are

created. At this point there are

six cookies active. Notice that

the original cookie that was

created in the last example

(RepeatVisitor) is not active

since its 1 minute lifetime has

elapsed. If you set its lifetime to

be longer or execute the

CookieTest servlet within 1

minute of the RepeatVisitor

cookie creation it will also

appear in this list as well as the

list from the previous page.

Notice the time of day.

CNT 4714: Servlets – Part 2 Page 51 Dr. Mark Llewellyn ©

Cookie Manager in

Opera just after starting

the CookieTest Servlet

running. At this point

there are six cookies

active. Notice that the

original cookie that was

created in the last

example

(RepeatVisitor) is not

active since its 1 minute

lifetime has elapsed. If

you set its lifetime to be

longer or execute the

CookieTest servlet

within 1 minute of the

RepeatVisitor cookie

creation it will also

appear in this list as

well as the list from the

previous page. Inset at

top right shows the

cookies.

CNT 4714: Servlets – Part 2 Page 52 Dr. Mark Llewellyn ©

Results of revisiting the CookieTest servlet using a new browser session within 15 minutes of the first visit (in the earlier

browser session. Notice that the only cookies which are now active are the persistent cookies (the ones with the 15 minute

lifetime).

Notice the time of day is less than 15 minutes after starting servlet.

CNT 4714: Servlets – Part 2 Page 53 Dr. Mark Llewellyn ©

Result of revisiting the CookieTest servlet after more than 15

minutes since the last visit but without closing the browser.

In this case the persistent cookies are no longer active since their

maximum age has been exceeded. The session cookies are still

active since the browser session has not terminated.

Note the time of day is >15 minutes after initially starting the

servlet.

CNT 4714: Servlets – Part 2 Page 54 Dr. Mark Llewellyn ©

Modifying Cookie Values

• In the previous examples, we’ve sent a cookie to the user only on

the first visit to the servlet. Once the cookie had a value, we never

changed it.

• This approach of a single cookie value is quite common since

cookies frequently contain nothing but unique user identifiers: all

the real user data is stored in a database – the user identifier is

merely the database key.

• But what if you would like to periodically change the value of a

cookie?

• To replace a previous cookie value, send the same cookie name

with a different cookie value. If you actually use the incoming

Cookie objects, don’t forget to do response.addCookie;

merely calling setValue is not sufficient.

CNT 4714: Servlets – Part 2 Page 55 Dr. Mark Llewellyn ©

Modifying Cookie Values (cont.)

• You also need to reapply any relevant cookie attributes by calling

setMaxAge, setPath, etc. – remember that cookie attributes

are not specified for incoming cookies.

• Reapplying these attributes means that reusing the incoming

Cookie object saves you very little, so many developers don’t

bother to use the incoming Cookie object.

• The next example illustrates modifying a cookie value by

maintaining a count of the number of times your web browser

visits a servlet named ClientAccessCounts.

• The code for ClientAccessCounts is shown on the next page with

some results shown on the following pages.

CNT 4714: Servlets – Part 2 Page 56 Dr. Mark Llewellyn ©

ClientAccessCounts Servlet
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Servlet that prints per-client access counts.

public class ClientAccessCounts extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String countString =

CookieUtilities.getCookieValue(request, "accessCount", "1");

int count = 1;

try {

count = Integer.parseInt(countString);

} catch(NumberFormatException nfe) { }

Cookie c =

new Cookie("accessCount",

String.valueOf(count+1));

c.setMaxAge(900);

response.addCookie(c);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Access Count Servlet";

Create a new cookie with

value 1 greater than current

cookie value.

Read the current

cookie value.

CNT 4714: Servlets – Part 2 Page 57 Dr. Mark Llewellyn ©

String docType =

"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";

out.println ("<body bgcolor=white background=images/background.jpg

lang=EN-US link=blue vlink=blue >");

out.println ("<body style='tab-interval:.5in'>");

out.println ("");

out.println ("
");

out.println(docType +

"<HTML>\n" +

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<CENTER>\n" +

"<H1>" + title + "</H1>\n" +

"<H2>This is visit number " +

count + " by this browser.</H2>\n" +

"</CENTER></BODY></HTML>");

}

}

CNT 4714: Servlets – Part 2 Page 58 Dr. Mark Llewellyn ©

Results of initial browser visit

to ClientAccessCounts servlet.

Results of a subsequent

browser visit to

ClientAccessCounts servlet.

CNT 4714: Servlets – Part 2 Page 59 Dr. Mark Llewellyn ©

Session Tracking
• As we mentioned before, HTTP is a “stateless” protocol: each time a

client retrieves a web page, the client opens a separate connection to the
web server and the server does not automatically maintain contextual
information about the client.

• Even with servers that support persistent (keep-alive) HTTP
connections and keep sockets open for multiple client requests that
occur in rapid succession, there is no built-in support for maintaining
contextual information.

• This lack of context causes a number of difficulties. For example, when
clients at an online store add an item to their shopping carts, how does
the server know what’s already in the carts? Similarly, when clients
decide to proceed to checkout, how can the server determine which of
the previously created shopping carts are theirs?

• Servlets provide an outstanding session tracking solution: the
HttpSession API. This high-level interface is built on top of
cookies (and URL rewriting). All servers are required to support
session tracking with cookies.

CNT 4714: Servlets – Part 2 Page 60 Dr. Mark Llewellyn ©

Session Tracking (cont.)

• Using sessions in servlets is straightforward and involves four basic
steps:

1. Accessing the session object associated with the current request. Call
request.getSession to get an HttpSession object, which is a
simple hash table for storing user-specific data.

2. Looking up information associated with a session. Call
getAttribute on the HttpSession object, cast the return value
to the appropriate type, and check whether the result is null.

3. Storing information in a session. Use setAttribute with a key and
a value.

4. Discarding session data. Call removeAttribute to discard a
specific value. Call invalidate to discard an entire session. Call
logout to log the client out of the web server and invalidate all
sessions associated with that user.

CNT 4714: Servlets – Part 2 Page 61 Dr. Mark Llewellyn ©

Browser Sessions Vs. Server Sessions

• By default, session-tracking is based on cookies that are stored

in the browser’s memory, not written to disk. Thus, unless the

servlet explicitly reads the incoming JSESSIONID cookie,

sets the maximum age and path, and sends it back out, quitting

the browser, results in the session being broken: the client will

not be able to access the session again.

• The problem, however, is that the server does not know that

the browser was closed and thus the server must maintain the

session in memory until the inactive interval has been

exceeded.

• To understand this problem consider the following scenario:

CNT 4714: Servlets – Part 2 Page 62 Dr. Mark Llewellyn ©

Browser Sessions Vs. Server Sessions

• Consider a physical shopping trip to your favorite store. You browse
around and put some items into a physical shopping cart, then leave that
shopping cart at the end of an aisle while you look for another item. A
clerk walks up and sees the shopping cart. Can they reshelve the items in
it?

• No – you are probably still shopping and will come back for the cart soon.

• What if you realize that you left your wallet at home – so you go back home
to get it. Can the clerk reshelve the items in the cart now?

• Again, no – the clerk presumably does not know that you have left the
store.

• So, what can the clerk do? They can keep an eye on the cart, and if nobody
claims the cart for some period of time, they can conclude that it is abandon
and remove the items in it for reshelving.

• The only exception would be if you explicitly brought the cart to the clerk
and told them that you left your wallet at home are have to leave.

CNT 4714: Servlets – Part 2 Page 63 Dr. Mark Llewellyn ©

Browser Sessions Vs. Server Sessions (cont.)

• The analogous situation in the servlet world is one in which the server is trying
to decided if it can throw away your HttpSession object.

• Just because you are not currently using the session does not mean the server
can throw it away. Maybe you will be back (submit a new request) soon.

• If you quit your browser, thus causing the browser-session-level cookies to be
lost, the session is effectively broken. But as with the physical case of getting
in your car and leaving, the server does not know that you quit your browser.
So the server must still wait for a period of time to see if the session has been
abandoned.

• Sessions automatically become inactive when the amount of time between
client accesses exceeds the interval specified by
getMaxInactiveInterval. When this happens, objects stored in the
HttpSession object are removed.

• The one exception to the “server waits until the sessions time out” rule is if
invalidate or logout is called. This is akin to your explicitly telling the clerk
that you are leaving, so the server can immediately remove all the items from
the session and destroy the session object.

CNT 4714: Servlets – Part 2 Page 64 Dr. Mark Llewellyn ©

A Servlet That Shows Per-Client Access Counts

• The last example in this section of notes is a servlet that shows basic
information about the client’s session.

• When the client connects, the servlet uses
request.getSession either to retrieve the existing session or,
if there is no session, to create a new one.

• The servlet then looks for an attribute called accessCount of type
Integer. If it cannot find such an attribute, it uses the value of 0
as the number of previous accesses by the client. This value is then
incremented and associated with the session by setAttribute.

• Finally, the servlet prints a small HTML table showing information
about the session.

• Note that Integer is an immutable data structure: once built, it
cannot be changed. That means that you have to allocate a new
Integer object on each request, then use setAttribute to
replace the old object.

CNT 4714: Servlets – Part 2 Page 65 Dr. Mark Llewellyn ©

ShowSession Servlet
// Servlet that uses session-tracking to keep per-client

// access counts. Also shows other info about the session.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class ShowSession extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

HttpSession session = request.getSession();

String heading;

Integer accessCount =

(Integer)session.getAttribute("accessCount");

if (accessCount == null) {

accessCount = new Integer(0);

heading = "Welcome, Newcomer";

} else {

heading = "Welcome Back";

accessCount = new Integer(accessCount.intValue() + 1);

}

// Integer is an immutable data structure. So, you

// cannot modify the old one in-place. Instead, you

// have to allocate a new one and redo setAttribute.

CNT 4714: Servlets – Part 2 Page 66 Dr. Mark Llewellyn ©

ShowSession Servlet
session.setAttribute("accessCount", accessCount);

PrintWriter out = response.getWriter();

String title = "Session Tracking Example";

String docType =

"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +

"Transitional//EN\">\n";

out.println ("<body bgcolor=white background=images/background.jpg

lang=EN-US link=blue vlink=blue >");

out.println ("<body style='tab-interval:.5in'>");

out.println ("");

out.println ("
");

out.println(docType +

"<HTML>\n" +

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<CENTER>\n" + "<H1>" + heading + "</H1>\n" +

"<H2>Information on Your Session:</H2>\n" +

"<TABLE BORDER=1>\n" +"<TR BGCOLOR=\"#FFAD00\">\n" +

" <TH>Info Type<TH>Value\n" + "<TR>\n" + " <TD>ID\n" +

" <TD>" + session.getId() + "\n" + "<TR>\n" +

" <TD>Creation Time\n" + " <TD>" +

new Date(session.getCreationTime()) + "\n" +

"<TR>\n" + " <TD>Time of Last Access\n" +

" <TD>" +

new Date(session.getLastAccessedTime()) + "\n" +

"<TR>\n" + " <TD>Number of Previous Accesses\n" +

" <TD>" + accessCount + "\n" + "</TABLE>\n" +

"</CENTER></BODY></HTML>");

} }

CNT 4714: Servlets – Part 2 Page 67 Dr. Mark Llewellyn ©

Client makes their first visit to the

ShowSession servlet. Since no session

exists for this client, one is created. Some

of the details about this session are shown

by the servlet. Note time of creation and

time of last access are initially the same.

CNT 4714: Servlets – Part 2 Page 68 Dr. Mark Llewellyn ©

The client has returned (several

times!) to the ShowSession servlet.

Since HttpSession utilizes cookies

from the client’s browser, this

means that the user has not

terminated the browser in-between

visits to this servlet.

CNT 4714: Servlets – Part 2 Page 69 Dr. Mark Llewellyn ©

Browser Sessions Vs. Server Sessions

CNT 4714: Servlets – Part 2 Page 70 Dr. Mark Llewellyn ©

The client returns once again to the

ShowSession servlet. Since HttpSession

utilize cookies from the client’s browser,

this means that the user has not

terminated the browser in-between visits

to this servlet. Notice that the number of

previous times the user has accessed the

servlet has increased.

CNT 4714: Servlets – Part 2 Page 71 Dr. Mark Llewellyn ©

The client terminated original browser session

and started a new browser session (notice

here that I even used a different browser for a

more dramatic effect). Since HttpSession

utilized cookies from the client’s browser, this

means that the user termination ended the

original session object and now a new object

is created. Notice that the number of

accesses is now 0 and the time of day is after

the original session terminated.

